This commit is contained in:
parent
d77b983a4b
commit
c52aa12c70
1 changed files with 6 additions and 6 deletions
|
@ -144,7 +144,7 @@ To such end, the following modifications are made to the different graphs:
|
|||
\end{description}
|
||||
|
||||
\begin{example}[Variable packing and unpacking]
|
||||
Let it be \josep{Excelente cancion de los beatles. Buenísima. Pero mejor empieza así: Let $f(x, y)$ be a function with... ;-)} a function $f(x, y)$ with two integer parameters \added{which\josep{that} modifies the argument passed in its second parameter}, and a call $f(a + b, c)$, with parameters passed by reference if possible. The label of the method call node in the CFG would be ``\texttt{x\_in = a + b, y\_in = c, f(a + b, c), c = y\_out}''; method $f$ would have \texttt{x = x\_in, y = y\_in} in the ``Start'' node and \texttt{y\_out = y} in the ``End'' node. The relevant section of the SDG would be:
|
||||
Let it be \josep{Excelente cancion de los beatles. Buenísima. Pero mejor empieza así: Let $f(x, y)$ be a function with... ;-)} a function $f(x, y)$ with two integer parameters \added{which\josep{that} modifies the argument passed in its second parameter}, and a call $f(a + b, c)$, with parameters passed by reference if possible. The label of the method call node in the CFG would be ``\texttt{x\_in = a + b, y\_in = c, f(a + b, c)\josep{???}, c = y\_out}''; method $f$ would have \texttt{x = x\_in, y = y\_in} in the ``Start'' node and \texttt{y\_out = y} in the ``End'' node. The relevant section of the SDG would be: \josep{Todo este parrafo y la figura que sigue no se entienden. Hay que reescribirlo y explicarlo más detenidamente, paso a paso. Se supone que este es el ejmplo de la sección. El que va a aclarar las dudas de qué es $x_in$, etc. y de cómo funciona el SDG. Sin embargo, más que aclarar, lía (a uno que no sepa de slicing no le aclara nada). De hecho, para que se entendiera bien, una vez has construido el grafo, estaría bien continuar un poco el ejemplo explicando como las dependencias hacen que lo que hay dentro del método llamado depende (siguiendo los arcos) de lo que hay en el método llamador (o al menos de los parámetros de la llamada). Esto requiere un poco de texto explicativo.}
|
||||
\begin{center}
|
||||
\includegraphics[width=0.5\linewidth]{img/parameter-passing}
|
||||
\end{center}
|
||||
|
@ -175,14 +175,14 @@ dependencies, which is the most widely--used solution \cite{BalH93}.
|
|||
The most popular approach was proposed by Ball and Horwitz~\cite{BalH93}, classifying instructions into three separate categories:
|
||||
|
||||
\begin{description}
|
||||
\item[Statement.] Any instruction that is not a conditional or unconditional jump. It has one outgoing edge in the CFG, to the next instruction that follows it in the program.
|
||||
\item[Predicate.] Any conditional jump instruction, such as \texttt{while}, \texttt{until}, \texttt{do-while}, \texttt{if}, etc. It has two outgoing edges, labeled \textit{true} and \textit{false}; leading to the corresponding instructions.
|
||||
\item[Pseudo--predicates.] Unconditional jumps (e.g. \texttt{break}, \texttt{goto}, \texttt{continue}, \texttt{return}); are like predicates, with the difference that the outgoing edge labeled \textit{false} is marked as non--executable, and there is no possible execution where such edge would be possible, according to the definition of the CFG (as seen in \sergio{definition o Definition?}definition~\ref{def:cfg}). Originally the edges had a specific reasoning backing them up: the \textit{true} edge leads to the jump's destination and the \textit{false} one, to the instruction that would be executed if the unconditional jump was removed, or converted into a \texttt{no op}\sergio{no op o no-op?} (a blank operation that performs no change to the program's state). \sergio{\{}This specific behavior is used with unconditional jumps, but no longer applies to pseudo--predicates, as more instructions have used this category as means of ``artificially'' \carlos{bad word choice} generating control dependencies.\sergio{\}No entrar en este jardin, cuando se definio esto no se contemplaba la creacion de nodos artificiales. -Quita el originally, ahora es originally.}
|
||||
\item[Statement.] Any instruction that is not a conditional or unconditional jump. \josep{\deleted{It has one outgoing edge in the CFG, to the next instruction that follows it in the program.}\added{Those nodes that represent an statement in the CFG have one outgoing edge pointing to the next instruction that follows it in the program.}}
|
||||
\item[Predicate.] Any conditional jump instruction, such as \texttt{while}, \texttt{until}, \texttt{do-while}, \texttt{if}, etc. \josep{\deleted{It has two outgoing edges, labeled \textit{true} and \textit{false}; leading to the corresponding instructions.}\added{In the CFG, those nodes representing predicates have two outgoing edges, labeled \textit{true} and \textit{false}, leading to the corresponding instructions.}}
|
||||
\item[Pseudo--predicates.] Unconditional jumps (e.g. \texttt{break}, \texttt{goto}, \texttt{continue}, \texttt{return}); are like predicates, with the difference that the outgoing edge labeled \textit{false} is marked as non--executable\josep{---because there is no possible execution where such edge would be possible,\deleted{, and there is no possible execution where such edge would be possible,} according to the definition of the CFG (see Definition~\ref{def:cfg})---}. Originally the edges had a specific reasoning backing them up: the \textit{true} edge leads to the jump's destination and the \textit{false} one, to the instruction that would be executed if the unconditional jump was removed, or converted into a \texttt{no op}\sergio{no op o no-op?} (a blank operation that performs no change to the program's state). \sergio{\{}This specific behavior is used with unconditional jumps, but no longer applies to pseudo--predicates, as more instructions have used this category as means of ``artificially'' \carlos{bad word choice} generating control dependencies.\sergio{\}No entrar en este jardin, cuando se definio esto no se contemplaba la creacion de nodos artificiales. -Quita el originally, ahora es originally.}
|
||||
\end{description}
|
||||
|
||||
\carlos{Pseudo--statements now have been introduced and are used to generate all control edges (for now just the Start method to the End).}
|
||||
\carlos{Pseudo--statements now have been introduced and are used to generate all control edges (for now just the Start method to the End).}\josep{No entiendo este CCC}
|
||||
|
||||
As a consequence of this classification, every instruction after an unconditional jump $j$ is control--dependent (either directly or indirectly) on $j$ and the structure containing it (a conditional statement or a loop), as can be seen in the following example.
|
||||
As a consequence of this classification, every instruction after an unconditional jump $j$ is control--dependent (either directly or indirectly) on $j$ and the structure containing it (\josep{a predicate such as }a conditional statement or a loop), as can be seen in the following example.
|
||||
|
||||
\begin{figure}
|
||||
\centering
|
||||
|
|
Loading…
Add table
Reference in a new issue