
Homework 1
Simple code generator
Aristeidis Mastoras
Compiler Design – SS18
(based on slides of Luca Della Toffola from Compiler Design – HS15)

1

Administrative issues

• Has everyone found a teammate?

• Mailing-list: cd1@lists.inf.ethz.ch

– Please subscribe if we forgot you

• Assistants: cd1-owner@lists.inf.ethz.ch

2

mailto:cd1@lists.inf.ethz.ch
mailto:cd1-owner@lists.inf.ethz.ch

Today

3

HW
Overview SVN

Javali HW1

Today

4

HW
Overview SVN

Javali HW1

This course

Lexical
Analysis

Syntax
Analysis

Semantic
Analysis

Code
Generation

5

Build a full Javali compiler

This course

Lexical
Analysis

Syntax
Analysis

Semantic
Analysis

Code
Generation

6

HW2

Parser

This course

Lexical
Analysis

Syntax
Analysis

Semantic
Analysis

Code
Generation

7

HW3

This course

Lexical
Analysis

Syntax
Analysis

Semantic
Analysis

Code
Generation

8

HW4

This course

Lexical
Analysis

Syntax
Analysis

Semantic
Analysis

Code
Generation

9

HW6

Global optimizations
or

Javali advanced features

Homework 1

Lexical
Analysis

Syntax
Analysis

Semantic
Analysis

Code
Generation

10

Homework 1

Lexical
Analysis

Syntax
Analysis

Semantic
Analysis

11

Code
Generation

Variable declarations
Assignments
Simple expressions

Homework 1

Lexical
Analysis

Syntax
Analysis

Semantic
Analysis

12

Code
Generation

We give you the parser

Variable declarations
Assignments
Simple expressions

Homework 1

Lexical
Analysis

Syntax
Analysis

Semantic
Analysis

13

Code
Generation

Not necessary for now

Variable declarations
Assignments
Simple expressions

Grading

• Homework task
– The compiler “works”

• Write your own tests
– Test exhaustively that the compiler works

• Code quality
– The code is readable

14

Grading

15

• Indication of your grade

• Link will be announced

Good news!

• HW1 is independent of HW2
• The same applies to the next HW
• You can still do the next HW even if you don’t

manage to get this right

16

Today

17

HW
Overview SVN

Javali HW1

SVN

What is SVN?
• a version control system
• it is used to store current and previous

versions of (not only) source code
• you can revert to a previous version

18

Javali fragment

We provide:
• a compiler skeleton for every HW
• stored in an SVN repository
• every team has a different SVN repository

19

Get your fragment

20

https://svn.inf.ethz.ch/svn/trg/cd_students/ss18/teams/<YourTeam>

Case-sensitive
Homework + grades
Your submission platform

SVN basics

svn checkout https://<your_SVN_repo>
Get the remote copy of the repository on your machine.

svn commit –m “Message about your changes”
Update remote copy of the repository with local changes.

svn update
Get remote changes of your repository if modified.

21

SVN basics

svn add <file-or-dir-name>
Add a file/directory to the local copy.
(It requires commit to update the remote copy.)

svn remove <file-or-dir-name>
Delete a file/directory from the local copy.
(It requires commit to update the remote copy.)

22

SVN basics

svn status
Report files that are different in the local copy from those in the remote copy.

svn diff –r <version-number> <file-name>
Report the differences between the local copy and a specific version.

23

SVN resources

Links
– http://svnbook.red-bean.com
– https://www.google.ch/search?q=svn+tutorial

Software
– Eclipse Subversive
– Tortoise SVN
– Command-line

24

http://svnbook.red-bean.com
https://www.google.ch/search?q=svn+tutorial

Today

25

HW
Overview SVN

Javali HW1

Javali

• Simple OO programming language
– Subset of Java

• Javali specification in the course web-site
– Updated recently, subject to changes (and bugs)

• When the specification is incomplete
– Common sense or Java specification apply
– Use the mailing-list for clarifications or questions

26

Javali framework

• We provide a framework skeleton
– To use for your homework
– Utility classes and basic tasks
– Free to modify or create your own
– Please comply to submission requirements

• After each homework we provide a solution

27

Javali framework
src
Source of the compiler

test
Source files for testing your compiler

lib
Compiler dependencies as .JAR files

javali_tests
Unit-tests in form of .javali files. These are example programs to test

build.xml
Optional ANT script for command-line (can be used in Eclipse)

28

Compile the Javali framework

Fragment is an Eclipse project, it will build
automatically

If you don’t use Eclipse, install ANT and type:
ant test

29

It compiles automatically too J

How to test your Javali compiler
• We provide a JUnit-based testing framework
• A test is a Javali program in the javali_tests directory
• The testing framework compares the output of your

compiler against our reference solution

30

To test your compiler write more Javali
programs that cover assignment tasks

You need to see green

How to test your Javali compiler
• Expected results are stored in .javali.exec.ref files
• .javali.in file determines the standard input
– One line is equivalent to the result of a read() call.

• Run the tests using JUnit4
– Eclipse provides a GUI to inspect results

• .javali.err file contains debugging output and error
messages

31

DEMO

32

Javali framework changes

Files that may change per fragment
• lib/frozenReference.jar @ every fragment
• build.xml depending on the assignment
– We will provide details in the recitation
– Look for new targets

• Javali specification
– As previously mentioned

33

Today

34

HW
Overview SVN

Javali HW1

.section .data
STR_D:

.string "%d"

.section .data
var_a:

.int 0

.section .text

.globl main

main:
…

Simple code generator

35

class Main {
void main() {

int a;
a = 10;
write(a);

}
}

Input: Javali Program Output: x86 Assembly

main:
…
Emitting a = 10

Emitting 10
movl $10, %edi

movl %edi, var_a

Emitting write(a)
Emitting a
movl var_a, %edi

sub $16, %esp
movl %edi, 4(%esp)
movl $STR_D, 0(%esp)
call printf
add $16, %esp
…

Simple code generator

36

class Main {
void main() {

int a;
a = 10;
write(a);

}
}

?

Javali program representation

37

class Main {
void main() {

int a;
a = 10;
write(a);

}
}

ClassDecl

MethodDecl

Seq

VarDecl

Seq

Assign BuiltInWrite

VarVar IntConst

We give you the IR, i.e., the AST.
You need to generate the assembly code by using the AST.

The Intermediate Representation of
Javali compiler is an Abstract Syntax Tree

main:
...
Emitting a = 10

Emitting 10
movl $10, %edi

movl %edi, var_a

Emitting b = (a + 7)
Emitting (a + 7)

Emitting 7
movl $7, %edi
Emitting a
movl var_a, %esi

add %edi, %esi
movl %esi, var_b
...

Another example

38

class Main {
void main() {

int a, b;
a = 10;
b = a + 7;

}
}

Input: Javali Program Output: x86 Assembly

b

=

+

a 7

Javali Abstract Syntax Tree

39

Ast

Decl Stmt Expr

… … …

Ast nodes declared in cd/ir/Ast.java

abstract classes

concrete classes for nodes used from the IR

Javali Abstract Syntax Tree

Declarations
ClassDecl, MethodDecl, VarDecl

Statements
Assign, BuiltInWrite, BuiltInWriteln, IfElse, MethodCall, WhileLoop, Nop

Expressions
Var, IntConst, UnaryOp, BinaryOp, BuiltInRead, Index, NewArray, Field, Cast,
NullConst, ThisRef, NewObject, BooleanConst

40

Javali Abstract Syntax Tree

Declarations
ClassDecl, MethodDecl, VarDecl

Statements
Assign, BuiltInWrite, BuiltInWriteln, IfElse, MethodCall, WhileLoop, Nop

Expressions
Var, IntConst, UnaryOp, BinaryOp, BuiltInRead, Index, NewArray, Field, Cast,
NullConst, ThisRef, NewObject, BooleanConst

41

Only a subset of the AST nodes
are used in Homework 1

Print the Abstract Syntax Tree

• We provide a utility class to print the AST
– cd/util/debug/AstDump.java

• To check the AST for a test program
– Examine the .parser.ref file, or the .err file.

• All AST nodes also have a toString() method

42

DEMO

43

Traverse the Abstract Syntax Tree

44

How can we traverse the AST?

Similarly to a (binary) tree.

Traverse a binary tree

• How can we traverse a binary tree?

45

1

3 4

2 5

6 7

public class Visitor {
void visit(TreeNode node) {

if (node.leftchild != null)
visit(node.leftchild);

if (node.rightchild != null)
visit(node.rightchild);

}
}

Traverse a binary tree

• What if different nodes have different colors
and different behavior?

46

• Blue nodes: print “blue”
• Green nodes: print “green”

abstract class TreeNode {
public TreeNode leftchild;
public TreeNode rightchild;
…

}

class BlueNode extends TreeNode { … }

class GreenNode extends TreeNode { … }

Traverse a binary tree

47

Traverse a binary tree
public class Visitor {

void visit(TreeNode node) {
if (node instanceof BlueNode)

print “blue”;
else if (node instanceof GreenNode)

print “green”;

if (node.leftchild != null) visit(node.leftchild);
if (node.rightchild != null) visit(node.rightchild);

}
}

48

Add node-specific
behavior

Traverse a binary tree

• This simple solution works well.
• But, there are more elegant solutions.
• Usage of design patterns.

49

Design patterns

50

… are descriptions of communicating objects and classes
customized to solve a general design problem in a particular
context

Gamma et al.
Design Patterns
Elements of Reusable Object-
Oriented Software

Design patterns

Wikipedia says:
• It is a general reusable solution to a commonly

occurring problem within a given context in
software design

• It is a description or template for how to solve
a problem that can be used in many different
situations

51

Design patterns

• There are many design patterns
• Patterns are related and can be combined
– Design good software is an art
– We may need multiple “tools” to solve a problem

• Examples of patterns that can be useful to
build your compiler
– (and that you may find in our reference solution)

52

Design patterns - Visitor

53

Intent
Defines an operation for an object structure.

Description
• Separates an algorithm from an object structure
• Does not change the structure
• Does not change class interface(s)
• Supports distinct unrelated operations

Visitor design pattern solution

class BlueNode extends TreeNode {
void accept(Visitor v) {

v.blueNode(this);
}

}

class GreenNode extends TreeNode {
void accept(Visitor v) {

v.greenNode(this);
}

}

54

We define a method
accept() for each node.

The accept method calls the proper method of the visitor class.

Visitor design pattern solution
public class Visitor {

public void blueNode(BlueNode node) {
print “blue”;
if (node.leftchild != null) node.leftchild.accept(this);
if (node.rightchild != null) node.rightchild.accept(this);

}

public void greenNode(GreenNode node) {
print “green”;
if (node.leftchild != null) node.leftchild.accept(this);
if (node.rightchild != null) node.rightchild.accept(this);

}
}

55

DEMO

56

Traverse the Abstract Syntax Tree

• Javali framework implements two main
visitors to traverse the AST:
– ExprVisitor<R,A> for Expressions
– AstVisitor<R,A> for Statements and Declarations

Apply an operation for each AST node
• Avoid to modify AST class

57

Generic
parameters

R = result
A = argument

Traverse the Abstract Syntax Tree

Two visitors for the code generator:
• ExprGenerator extends ExprVisitor<Register, Void>
• StmtGenerator extends AstVisitor<Register, Void>

58

Traverse the Abstract Syntax Tree

You can implement another Visitor to traverse
the AST of an expression:
• calculate the required number of registers
• e.g., 7 * (a + 1)

59

7

*

+

a 1

HW1 summary

• Implementation of simple code generator
• No stack frame necessary
• Use .data section slots for each variable
• Look for throw new ToDoException()
• Use registers for intermediate results
• Use optimal number of registers

60

