
210: Compiler Design
Spring 2017

Homework 3

Due: Tuesday, April 17th, 2018, 10 a.m.

25 Points

1 Introduction

The objective for this homework is to develop a semantic analyzer, building on the front-end that was
constructed in Homework 2.

2 Tasks

The semantic analyzer needs to guarantee that the input program can be safely executed according to
the semantic rules of Javali. In order to do this, it must perform several checks.

Whenever an error is detected, your code should throw a SemanticFailure exception, as defined
by the framework. Each SemanticFailure must specify a Cause, which is an enumeration defined
in the class. The testing framework will check that your code throws a SemanticFailure with the
correct Cause, but does not examine the user-readable message that is attached.

We have listed each of the semantic conditions you must check below, as well as the appropriate
Cause.

2.1 Create symbols for all types, fields, parameters, and local variables

You will need to create symbols for every class, array type, field, method, parameter, local variable, etc.
Typically, these symbols are linked in the AST, and possibly also stored in a symbol table to allow for a
symbol to be looked up by name.

In the homework template, we provide a sample class called Symbol that can be used to represent
the symbols, and we also added fields to the various AST nodes where symbols can be attached. But
we do not provide a symbol table implementation.

Note that the Javali language maintains a separate namespace each for types and for methods,
since they can easily be syntactically distinguished. Fields, variables, and parameters are in a com-
mon namespace and can hide each other based on scoping rules (see language specification). As an
example, consider the following legal Javali program, which declares a local variable named Foo of
type Foo. Also, there is no conflict between the field main and the method main():

class Foo {
}
class Main {

int main;
void main() {
Foo Foo;
Foo = new Foo();

}
}

1



2.2 Semantic failures and their causes

DOUBLE DECLARATION Within the same namespace and scope, no two symbols can have the same
name (see scoping in the language specification). That is, no two classes, no two fields, no two
methods, and no two local variables (including parameters) can be declared with the same name.

NO SUCH TYPE Wherever a type name is expected in the program, it must refer to an existing type that
is defined elsewhere in the program (as a class) or to a predefined (built-in) type.
For class declarations, only class types can be extended (i.e., inherited from).

INVALID START POINT A valid Javali program must define a class Main with a method main that
has the signature void main().

CIRCULAR INHERITANCE Inheritance relationships between classes must not contain cycles (e.g., A
extends B and B extends A).
Note: This is a tricky one that many groups did not get 100% right in previous years!

OBJECT CLASS DEFINED No class is defined with the name Object. This name is reserved for a
predefined class type that serves as the root of the inheritance hierarchy.

INVALID OVERRIDE Overriding methods must have the same signature as the method in the super
class. A method overrides a method of the super class if they share the same name. The signature
of methods consists of the return type, the number of parameters, and the type of all parameters.

TYPE ERROR Not following any of the rules below causes a TYPE ERROR:

• Integer literals (hex or decimal) are of type int, boolean literals (true and false) are of
type boolean, this is of the class type of the enclosing class, and the null literal is of a
hidden type that is a subtype of all reference types (array types and classes).

• write(expr) requires expr to be of type int

• read() produces a result of type int

• if(cond) and while(cond) require cond to be of type boolean

• The type of the right-hand side in an assignment must be a subtype of the type of the left-
hand side.

• Binary and unary arithmetic operators (*, /, %, +, -) require operands of type int and
produce a result of type int.

• Binary and unary boolean operators (!, &&, ||) require operands of type boolean and
produce a result of type boolean.

• Relational operators (<, <=, >, >=) require operands of type int and produce a result of
type boolean.

• Equality operators (==, !=) take operands of types L and R where either L is a subtype of
R, or R is a subtype of L.

• A cast from type R to type C is only legal if R is a subtype of C or vice versa. It produces a
result of type C.

• In an array-indexing expression (x[i]), the index must be of type int and the array must be
of some array type A[]. The type of the whole array-indexing expression is the element type
A of the array.

• When creating a new array with an expression new A[length], the type of length must
be int. The whole expression is of array type A[].

• new X() expressions are of the type X.

• In a method invocation, the type of each actual argument must be a subtype of the type of the
corresponding formal parameter. The whole method invocation has the type that is declared
as the formal return type of the method.

• There must be no attempt to access a field or a method on a target of a non-class type, such
as an array or a primitive type.

2



• In a method return statement, the expression type must be a subtype of the corresponding
formal return type. For void methods, any return statement with an expression should be a
TYPE ERROR.

WRONG NUMBER OF ARGUMENTS In a method invocation, the number of actual arguments must match
the number of formal parameters from the method declaration.

NO SUCH VARIABLE All referenced variables (including parameters) must exist.

NO SUCH FIELD All referenced fields must exist. Since fields in a subclass hide fields from super
classes, the type of a field expression (expr.f) is determined by the declaration of field f in the
class corresponding to the static type of expr. Only if the field is not declared there, the analyzer
should search for it in the class’s supertypes recursively.

NO SUCH METHOD All referenced methods must exist. Since methods can be inherited, the method m in
the expression expr.m() needs to be looked up in the class corresponding to the static type of
expr and if not found there, all its super classes recursively.

NOT ASSIGNABLE The left-hand side of an assignment must be assignable.The only assignable expres-
sions are variables (x), fields (expr.f), and array-indexing (expr[i])

MISSING RETURN A method with a return type different from void must have a return statement on
all possible control flow paths.
Note: This is another tricky one.

3 Comments

3.1 Inheritance

Your compiler is expected to handle inheritance (recall that Javali does not allow multiple inheritance!).
Note that a base class does not need to be declared before its subclasses. The ordering of class

declarations is not significant in Javali.

3.2 Subtyping

In Javali, all types are subtypes of themselves. In addition, all arrays are subtypes of Object, and a
class is a subtype of the class which it extends and this class’s supertypes. Be aware that in Javali arrays
are not covariant. That is, all arrays are direct subtypes of Object, unlike Java, where an array type
C[] is a subtype of another array type B[] if C is a subtype of B.

For the null literal, there is a hidden type that is a subtype of all reference types (arrays as well as
objects).

void, on the other hand, is a type with no instance. It can only be used as a return type for methods
and is never a subtype of any other type.

Otherwise, there are no subtyping relationships (for example, int and boolean and Object are
not related in any way).

3.3 Gray areas between parser and semantic analyzer

Technically, you can catch many of these errors in the parser, however we recommend that you check
for them in the semantic analyzer in order to be more compatible with the reference framework. As an
exception, the template we provide you catches the error of wrong number of arguments for write(),
writeln(), and read() in the parser.

3



3.4 Test cases

As usual, we expect you to develop a test suite. To make it easier for us to locate the tests you have
written, please place them in a subdirectory of javali_tests named HW3_team. In addition, it is
very helpful if you place a comment at the top of the test file indicating what you are trying to test.
Please note that it is useful to have positive tests (i.e., programs that should pass semantic analysis) as
well as negative ones (i.e., programs that should fail).

3.5 Turning in the solution

Please ensure that your final submission is checked into Subversion by the deadline. Any commit after
the deadline will not be considered. If you have any comments or remarks on your solution, please
provide a README file in the HW3 directory of your team’s Subversion directory.

4


	Introduction
	Tasks
	Create symbols for all types, fields, parameters, and local variables
	Semantic failures and their causes

	Comments
	Inheritance
	Subtyping
	Gray areas between parser and semantic analyzer
	Test cases
	Turning in the solution


