
Homework 5
Michael Faes

Compiler Design FS ‘18

HW5 Overview
New! Project-like homework that lasts until the
end of the semester!

Goal: Implement various optimizations to speed
up Javali programs

The fun part: There will be a competition:
Grade for HW5 is partially based on how well
your optimizations work compared to others!

2

Optimizations in the AST
• Copy propagation
• Constant folding
• …

Tested using AST interpreter,
by counting number of
executed “expressions”

Due: May 22, 10:00

Any kind of optimizations,
including in generated code

• Null-check elimination
• Array-bounds-check elimin.
• Method dispatch optimiz.
• (Register allocation)
• …

Tested by counting number
of executed assembly instrs.
Due: June 1, 23:59

3

Phase I Phase II

Grading
Optimizations are tested based on suite of
benchmark programs.

• Source code not available to you, but we will
give hints about what they do

• When you commit, programs will be compiled
and executed, and result shown on website

• You can experiment with different approaches!

Correctness is still paramount!
• Compilers that produce fast but incorrect code

will receive lower grades than correct ones

4

What’s in it (the Template) for You?

1. Complete & functional code generator
(solution of HW4)

2. Control flow graph construction

3. Framework for dataflow analysis

5

Control Flow Graph Recap
class Main {

void main() {
int count, i, input;
int zeros, nonZeros;
count = read();
i = 0; input = 0;
zeros = 0; nonZeros = 0;

while(i < count) {
input = read();
if(input == 0) {

zeros = zeros+1;
} else {

nonZeros = nonZeros+1;
}
i = i + 1;

}
write(zeros);
write(nonZeros);

}
}

BB-1
count = read();
i = 0; input = 0;
zeros = 0; nonZeros = 0;

BB-2
COND: i < count

BB-3
input = read();
COND: input == 0

BB-5
nonZeros++;

BB-4
zeros++;

BB-6
i++;

BB-7
write(zeros);
write(nonZeros);

false

true

falsetrue

BB-8 (exit)

(actual block numbering is different) 6

“basic block”

“control flow graph”

Control Flow Graph in the Template
New classes in cd.ir package: ControlFlowGraph and
BasicBlock

• Plus a new cfg field in MethodDecl

Class cd.transform.CfgBuilder that constructs CFG from
AST of a method

In “debug mode”, compiler outputs
the CFG into a .cfg.dot file

• Already the case for testing
• Use GraphViz to visualize

7

Dataflow Analysis “Framework”
Many optimizations can be
expressed as dataflow analysis

Template contains a framework
that provides common funct.

• I.e. the fixed-point iteration

Look at iterate() method in
DataFlowAnalysis

• Based on abstract methods
transferFunction(), …

ReachingDefs
Analysis NonNullAnalysis

DataFlowAnalysis
<State>

iterate() {...}
transferFunction();
initialState();
startState();
join();

State -> Set<Def> State ->
Set<VariableSymbol>

transferFctn() {…}
initialState() {…}
...

transferFctn() {…}
initialState() {…}
...

8

DataFlowAnalysis Class

9

public abstract class DataFlowAnalysis<State> {

protected final ControlFlowGraph cfg;
private Map<BasicBlock, State> inStates;
private Map<BasicBlock, State> outStates;

public DataFlowAnalysis(ControlFlowGraph cfg) {
this.cfg = cfg;

}

/** Subclasses should call this in the constructor, after initialization */
protected void iterate() {

// here’s the interesting stuff
// ...

}

protected abstract State transferFunction(BasicBlock block, State inState);
protected abstract State initialState();
protected abstract State startState();
protected abstract State join(Set<State> states);
...

}

Example: Reaching Defs
Implement simple methods:

• initialState(), startState():
return initial def sets for blocks

• join(): merges two def sets
where control flow joins

Implement transferFunction()
• Uses gen and kill sets to compute

effect of BB on state
• Compute gen and kill sets in
ReachingDefsAnalysis constr. to
make f.-p. iteration efficient!

10

public class ReachingDefsAnalysis
extends DataFlowAnalysis<Set<Def>> {

public ReachingDefsAnalysis
(ControlFlowGraph cfg) {

super(cfg);
// TODO

}

protected Set<Def> initialState() {
// TODO

}

...

public static class Def {
...

}
}

Statement Granularity Information
To be useful for optimizations, need
nullness info before each statement

Computed in additional local
analysis after fixed-point interation:

11

x = this.foo();
x.bar();
x = new X();
x.baz();

for each basic block
state = inState(basic block)
for each stmt in basic block

stateBefore(stmt) = state
state = update state based on stmt

stateBeforeCondition(basic block) = state

Questions?

12

	Homework 5
	HW5 Overview
	Phase I
	Grading
	What’s in it (the Template) for You?
	Control Flow Graph Recap
	Control Flow Graph in the Template
	Dataflow Analysis “Framework”
	DataFlowAnalysis Class
	Example: Reaching Defs
	Statement Granularity Information
	Questions?

